Stopping Distance

1. Calculate the braking distance for a car driving at $10,20,30,60$, and $90 \mathrm{~km} / \mathrm{h}$.
2. Compare the braking distances for a car travelling at $30 \mathrm{~km} / \mathrm{h}$ and a car travelling at 60 km / h. What do you conclude?
3. Calculate the total stopping distance for a car that is traveling at $60 \mathrm{~km} / \mathrm{h}$ on a rain-soaked road (use 1.5 seconds as the driver's reaction time).
4. If two cars are moving at $60 \mathrm{~km} / \mathrm{h}$, how far behind must the second car travel if it can safely stop?
5. A pedestrian wearing dark clothing at night is only visible at a distance of about 35 m to a driver using low beams. Calculate the maximum speed a car could have such that a driver could brake and avoid a collision (use a 1.5 second reaction time).
6. Some Driver Education experts recommend that "when the vehicle ahead of you passes a certain point, such as a sign, count 'one-thousand-one, one-thousand-two, one-thousandthree.' This takes about 3 seconds. If you pass this same point before you finish counting, you are following too closely." They also suggest a " 4 second or more cushion" in inclement weather. Using the laws of physics and your understanding of braking distance, write a rationale for this rule.
